Calculate 95 percent and 99 percent confidence intervals for
Calculate 95 percent and 99 percent confidence intervals for µ. (Round your answers to 3 decimal places.)
| Recall that a bank manager has developed a new system to reduce  the time customers spend waiting to be served by tellers during  peak business hours. The mean waiting time during peak business  hours under the current system is roughly 9 to 10 minutes. The bank  manager hopes that the new system will have a mean waiting time  that is less than six minutes. The mean of the sample of 91 bank  customer waiting times is  | 
Solution
a)
95% CONFIDENCE:
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    5.42          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    2.41          
 n = sample size =    91          
               
 Thus,              
 Margin of Error E =    0.495158727          
 Lower bound =    4.924841273          
 Upper bound =    5.915158727          
               
 Thus, the confidence interval is              
               
 (   4.924841273   ,   5.915158727   ) [ANSWER]
*************************
99% CONFIDENCE:
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    5.42          
 z(alpha/2) = critical z for the confidence interval =    2.575829304          
 s = sample standard deviation =    2.41          
 n = sample size =    91          
               
 Thus,              
 Margin of Error E =    0.650748875          
 Lower bound =    4.769251125          
 Upper bound =    6.070748875          
               
 Thus, the confidence interval is              
               
 (   4.769251125   ,   6.070748875   ) [ANSWER]

